Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.02.03.578771

ABSTRACT

The rapid emergence of divergent SARS-CoV-2 variants has led to an update of the COVID-19 booster vaccine to a monovalent version containing the XBB.1.5 spike. To determine the neutralization breadth following booster immunization, we collected blood samples from 24 individuals pre- and post-XBB.1.5 mRNA booster vaccination (~1 month). The XBB.1.5 booster improved both neutralizing activity against the ancestral SARS-CoV-2 strain (WA1) and the circulating Omicron variants, including EG.5.1, HK.3, HV.1, XBB.1.5 and JN.1. Relative to the pre-boost titers, the XBB.1.5 monovalent booster induced greater total IgG and IgG subclass binding, particular IgG4, to the XBB.1.5 spike as compared to the WA1 spike. We evaluated antigen-specific memory B cells (MBCs) using either spike or receptor binding domain (RBD) probes and found that the monovalent booster largely increases non-RBD cross-reactive MBCs. These data suggest that the XBB.1.5 monovalent booster induces cross-reactive antibodies that neutralize XBB.1.5 and related Omicron variants.


Subject(s)
COVID-19 , Lymphoma, B-Cell
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.07.22270629

ABSTRACT

The ability to distinguish between SARS-CoV-2 variants of concern (VOCs) is of ongoing interest due to differences in transmissibility, response to vaccination, clinical prognosis, and therapy. Although detailed genetic characterization requires whole-genome sequencing (WGS), targeted nucleic acid amplification tests can serve a complementary role in clinical settings, as they are more rapid and accessible than sequencing in most laboratories. We designed and analytically validated a two-reaction multiplex reverse transcription quantitative PCR (RT-qPCR) assay targeting spike protein mutations L452R, E484K, and N501Y in Reaction 1, and del69-70, K417N, and T478K in Reaction 2. This assay had 95-100% agreement with WGS in 502 upper respiratory swabs collected between April 26 and August 1, 2021, consisting of 43 Alpha, 2 Beta, 20 Gamma, 378 Delta, and 59 non-VOC infections. Validation in a separate group of 230 WGS-confirmed Omicron variant samples collected in December 2021 and January 2022 demonstrated 100% agreement. This RT-qPCR-based approach can be implemented in clinical laboratories already performing SARS-CoV-2 nucleic acid amplification tests to assist in local epidemiological surveillance and clinical decision-making.


Subject(s)
Genomic Instability
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.20.21255480

ABSTRACT

Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with concerning phenotypic mutations is of public health interest. Genomic surveillance is an important tool for pandemic response, but many laboratories do not have the resources to support population-level sequencing. We hypothesized that a spike genotyping nucleic acid amplification test (NAAT) could facilitate high-throughput variant surveillance. We designed and analytically validated a one-step multiplex allele-specific reverse transcriptase polymerase chain reaction (RT-qPCR) to detect three non-synonymous spike protein mutations (L452R, E484K, N501Y). Assay specificity was validated with next-generation whole-genome sequencing. We then screened a large cohort of SARS-CoV-2 positive specimens from our San Francisco Bay Area population. Between December 1, 2020 and March 1, 2021, we screened 4,049 unique infections by genotyping RT-qPCR, with an assay failure rate of 2.8%. We detected 1,567 L452R mutations (38.7%), 34 N501Y mutations (0.84%), 22 E484K mutations (0.54%), and 3 (0.07%) E484K+N501Y mutations. The assay had near-perfect (98-100%) concordance with whole-genome sequencing in a validation subset of 229 specimens, and detected B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.526, and P.2 variants, among others. The assay revealed rapid emergence of L452R in our population, with a prevalence of 24.8% in December 2020 that increased to 62.5% in March 2021. We developed and clinically implemented a genotyping RT-qPCR to conduct high-throughput SARS-CoV-2 variant screening. This approach can be adapted for emerging mutations and immediately implemented in laboratories already performing NAAT worldwide using existing equipment, personnel, and extracted nucleic acid.


Subject(s)
Coronavirus Infections
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.15.21251511

ABSTRACT

The coronavirus SARS-CoV-2 (SCV2) causes acute respiratory distress, termed COVID-19 disease, with substantial morbidity and mortality. As SCV2 is related to previously-studied coronaviruses that have been shown to have the capability for brain invasion, it seems likely that SCV2 may be able to do so as well. To date, although there have been many clinical and autopsy-based reports that describe a broad range of SCV2-associated neurological conditions, it is unclear what fraction of these have been due to direct CNS invasion versus indirect effects caused by systemic reactions to critical illness. Still critically lacking is a comprehensive tissue-based survey of the CNS presence and specific neuropathology of SCV2 in humans. We conducted an extensive neuroanatomical survey of RT-PCR-detected SCV2 in 16 brain regions from 20 subjects who died of COVID-19 disease. Targeted areas were those with cranial nerve nuclei, including the olfactory bulb, medullary dorsal motor nucleus of the vagus nerve and the pontine trigeminal nerve nuclei, as well as areas possibly exposed to hematogenous entry, including the choroid plexus, leptomeninges, median eminence of the hypothalamus and area postrema of the medulla. Subjects ranged in age from 38 to 97 (mean 77) with 9 females and 11 males. Most subjects had typical age-related neuropathological findings. Two subjects had severe neuropathology, one with a large acute cerebral infarction and one with hemorrhagic encephalitis, that was unequivocally related to their COVID-19 disease while most of the 18 other subjects had non-specific histopathology including focal B-amyloid precursor protein white matter immunoreactivity and sparse perivascular mononuclear cell cuffing. Four subjects (20%) had SCV2 RNA in one or more brain regions including the olfactory bulb, amygdala, entorhinal area, temporal and frontal neocortex, dorsal medulla and leptomeninges. The subject with encephalitis was SCV2-positive in a histopathologically-affected area, the entorhinal cortex, while the subject with the large acute cerebral infarct was SCV2-negative in all brain regions. Like other human coronaviruses, SCV2 can inflict acute neuropathology in susceptible patients. Much remains to be understood, including what viral and host factors influence SCV2 brain invasion and whether it is cleared from the brain subsequent to the acute illness.


Subject(s)
Coronavirus Infections , Hemorrhage , Respiratory Distress Syndrome , Cerebral Infarction , Encephalitis , Hypothalamic Neoplasms , COVID-19 , Papilloma, Choroid Plexus
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.02.20224816

ABSTRACT

BackgroundThe genome of SARS-CoV-2 is susceptible to mutations during viral replication due to the errors generated by RNA-dependent RNA polymerases. These mutations enable the SARS-CoV-2 to evolve into new strains. Viral quasispecies emerge from de novo mutations that occur in individual patients. In combination, these sets of viral mutations provide distinct genetic fingerprints that reveal the patterns of transmission and have utility in contract tracing. MethodsLeveraging thousands of sequenced SARS-CoV-2 genomes, we performed a viral pangenome analysis to identify conserved genomic sequences. We used a rapid and highly efficient computational approach that relies on k-mers, short tracts of sequence, instead of conventional sequence alignment. Using this method, we annotated viral mutation signatures that were associated with specific strains. Based on these highly conserved viral sequences, we developed a rapid and highly scalable targeted sequencing assay to identify mutations, detect quasispecies and identify mutation signatures from patients. These results were compared to the pangenome genetic fingerprints. ResultsWe built a k-mer index for thousands of SARS-CoV-2 genomes and identified conserved genomics regions and landscape of mutations across thousands of virus genomes. We delineated mutation profiles spanning common genetic fingerprints (the combination of mutations in a viral assembly) and rare ones that occur in only small fraction of patients. We developed a targeted sequencing assay by selecting primers from the conserved viral genome regions to flank frequent mutations. Using a cohort of SARS-CoV-2 clinical samples, we identified genetic fingerprints consisting of strain-specific mutations seen across populations and de novo quasispecies mutations localized to individual infections. We compared the mutation profiles of viral samples undergoing analysis with the features of the pangenome. ConclusionsWe conducted an analysis for viral mutation profiles that provide the basis of genetic fingerprints. Our study linked pangenome analysis with targeted deep sequenced SARS-CoV-2 clinical samples. We identified quasispecies mutations occurring within individual patients, mutations demarcating dominant species and the prevalence of mutation signatures, of which a significant number were relatively unique. Analysis of these genetic fingerprints may provide a way of conducting molecular contact tracing.

6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.15.20175794

ABSTRACT

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, could offer protective immunity, and may affect clinical outcomes of COVID-19 patients. We analyzed 625 serial plasma samples from 40 hospitalized COVID-19 patients and 170 SARS-CoV-2-infected outpatients and asymptomatic individuals. Severely ill patients developed significantly higher SARS-CoV-2-specific antibody responses than outpatients and asymptomatic individuals. The development of plasma antibodies was correlated with decreases in viral RNAemia, consistent with potential humoral immune clearance of virus. Using a novel competition ELISA, we detected antibodies blocking RBD-ACE2 interactions in 68% of inpatients and 40% of outpatients tested. Cross-reactive antibodies recognizing SARS-CoV RBD were found almost exclusively in hospitalized patients. Outpatient and asymptomatic individuals' serological responses to SARS-CoV-2 decreased within 2 months, suggesting that humoral protection may be short-lived.


Subject(s)
Virus Diseases , Severe Acute Respiratory Syndrome , COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.21.109637

ABSTRACT

The rapid spread of COVID-19 across the world has revealed major gaps in our ability to respond to new virulent pathogens. Rapid, accurate, and easily configurable molecular diagnostic tests are imperative to prevent global spread of new diseases. CRISPR-based diagnostic approaches are proving to be useful as field-deployable solutions. In a basic form of this assay, the CRISPR-Cas12 enzyme complexes with a synthetic guide RNA (gRNA). This complex is activated when it highly specifically binds to target DNA, and the activated complex non-specifically cleaves single-stranded DNA reporter probes labeled with a fluorophore-quencher pair. We recently discovered that electric field gradients can be used to control and accelerate this CRISPR assay by co-focusing Cas12-gRNA, reporters, and target. We achieve an appropriate electric field gradient using a selective ionic focusing technique known as isotachophoresis (ITP) implemented on a microfluidic chip. Unlike previous CRISPR diagnostic assays, we also use ITP for automated purification of target RNA from raw nasopharyngeal swab sample. We here combine this ITP purification with loop-mediated isothermal amplification, and the ITP-enhanced CRISPR assay to achieve detection of SARS-CoV-2 RNA (from raw sample to result) in 30 min for both contrived and clinical nasopharyngeal swab samples. This electric field control enables a new modality for a suite of microfluidic CRISPR-based diagnostic assays. Significance statementRapid, early-stage screening is especially crucial during pandemics for early identification of infected patients and control of disease spread. CRISPR biology offers new methods for rapid and accurate pathogen detection. Despite their versatility and specificity, existing CRISPR-diagnostic methods suffer from the requirements of up-front nucleic acid extraction, large reagent volumes, and several manual steps--factors which prolong the process and impede use in low resource settings. We here combine on-chip electric-field control in combination with CRIPSR biology to directly address these limitations of current CRISPR-diagnostic methods. We apply our method to the rapid detection of SARS-CoV-2 RNA in clinical samples. Our method takes 30 min from raw sample to result, a significant improvement over existing diagnostic methods for COVID-19.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.14.20102079

ABSTRACT

Reports have emerged documenting earlier SARS-CoV-2 cases than previously recognized. To investigate this possibility in the Bay Area, we retrospectively tested 1,700 samples from symptomatic individuals for the last 2 months of 2019. No SARS-CoV-2 positive pools were identified, consistent with limited transmission in this population at this time.

9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.12.092379

ABSTRACT

BackgroundSeveral point-of-care (POC) molecular tests have received emergency use authorization (EUA) from the Food and Drug Administration (FDA) for diagnosis of SARS-CoV-2. The test performance characteristics of the Accula (Mesa Biotech) SARS-CoV-2 POC test need to be evaluated to inform its optimal use. ObjectivesThe aim of this study was to assess test performance of the Accula SARS-CoV-2 test. Study designThe performance of the Accula test was assessed by comparing results of 100 nasopharyngeal swab samples previously characterized by the Stanford Health Care EUA laboratory-developed test (SHC-LDT) targeting the envelope (E) gene. Assay concordance was assessed by overall percent agreement, positive percent agreement (PPA), negative percent agreement (NPA), and Cohens kappa coefficient. ResultsOverall percent agreement between the assays was 84.0% (95% confidence interval [CI] 75.3 to 90.6%), PPA was 68.0% (95% CI 53.3 to 80.5%) and the kappa coefficient was 0.68 (95% CI 0.54 to 0.82). Sixteen specimens detected by the SHC-LDT were not detected by the Accula test, and showed low viral load burden with a median cycle threshold value of 37.7. NPA was 100% (95% CI 94.2 to 100%). ConclusionCompared to the SHC-LDT, the Accula SARS-CoV-2 test showed excellent negative agreement. However, positive agreement was low for samples with low viral load. The false negative rate of the Accula POC test calls for a more thorough evaluation of POC test performance characteristics in clinical settings, and for confirmatory testing in individuals with moderate to high pre-test probability of SARS-CoV-2 who test negative on Accula.

10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.26.20080101

ABSTRACT

BackgroundDetection of SARS-CoV-2 RNA in the blood, also known as RNAemia, has been reported, but its prognostic implications are not well understood. This study aimed to determine the frequency of SARS-CoV-2 RNA in plasma and its association with the clinical severity of COVID-19. MethodsAn analytical cross-sectional study was performed in a single-center tertiary care institution in northern California and included consecutive inpatients and outpatients with COVID-19 confirmed by detection of SARS-CoV-2 RNA in nasopharyngeal swab specimens. The prevalence of SARS CoV-2 RNAemia and the strength of its association with clinical severity variables were examined and included the need for transfer to an intensive care unit (ICU), mechanical ventilation and 30-day all-cause mortality. ResultsPaired nasopharyngeal and plasma samples were included from 85 patients. The overall median age was 55 years, and individuals with RNAemia were older than those with undetectable SARS-CoV-2 RNA in plasma (63 vs 50 years; p=0.001). Comorbidities were frequent including obesity (37.7%), hypertension (30.6%) and diabetes mellitus (22.4%). RNAemia was detected in a total of 28/85 (32.9%) individual patients, including 22/28 (78.6%) who required hospital admission. RNAemia was detected more frequently in individuals who developed severe disease including the need for ICU transfer (32.1% vs 14.0%; p=0.05), mechanical ventilation (21.4% vs 3.5%; p=0.01) and 30-day all-cause mortality (14.3% vs 0%; p=0.01). No association was detected between RNAemia and estimated levels of viral RNA in the nasopharynx. An additional 121 plasma samples from 28 individuals with RNAemia were assessed longitudinally, and RNA was detected for a maximum duration of 10 days. ConclusionThis study demonstrated a high proportion of SARS-CoV-2 RNAemia, and an association between RNAemia and clinical severity suggesting the potential utility of plasma viral testing as a prognostic indicator for COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL